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Abstract. Using finite-size scaling techniques we obtain accurate results for critical quantities
of the Ising model and the site percolation, in three dimensions. We pay special attention to
parametrizing the corrections-to-scaling, which is necessary to bring the systematic errors below
the statistical ones.

1. Introduction

The concept of universality is perhaps one of the main discoveries of modern physics [1].
The critical exponents of phase transitions are among the most important quantities in nature,
as they offer the most direct test of universality. Therefore, precise experimental measures
of these exponents combined with accurate theoretical calculations are crucial cross-checks.
Unfortunately, in three dimensions the range of variation of the exponents is very narrow. For
instance, the correlation-length exponent,ν, varies within a 10% interval for most systems [2].
Therefore, in order to distinguish between different universality classes, it is necessary to
measure or calculate these quantities with several significant figures.

There exist some powerful analytical techniques for computing critical exponents:ε-
expansions, high-T series,N -expansions, or perturbative expansions at fixed dimension. A
recent and complete study on this kind of calculations can be found in [3]. A drawback of
this approach is that the error estimate is quite involved. However, a 0.15% precision can be
reached forν in Ising systems.

A competing alternative is the use of finite-size scaling (FSS) techniques [4] combined
with a Monte Carlo (MC) method, which, in principle, is able to measure with unlimited
precision. The FSS method has the remarkable property of using the finite-size effects to extract
information about the critical properties of the system. In the language of the renormalization
group (RG), we expect that for large enough lattices the divergences are fully described by
the relevant operators. The MC method itself is not quite efficient as the statistical errors
in measures decrease only as the inverse square root of the numerical effort. However, the
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present sophisticated numerical techniques and algorithms, as well as the high computer power
available, have allowed us to largely reduce the statistical fluctuations. One could naively think
that to get one more significant digit for a critical exponent is only a matter of multiplying
the CPU time by 100. This is not true in general, since the effects due to the finite size of
the simulated lattices eventually become larger than the statistical errors (in the RG language,
the effects induced by the irrelevant couplings can no longer be neglected). Traditionally, one
designs a simulation in order to get the systematic errors to lie below the statistical ones. With
very high precision, a more quantitative treatment of systematic errors is required.

In this work, we wish to deal with the leading irrelevant terms (or corrections-to-scaling
terms in the FSS language) in two of the simplest models in three dimensions: the Ising model
and the site percolation [5]. The reader might be surprised that the FSS ansatz (FSSA) holds
for such a simple model as percolation, which is essentially not dynamical. The underlying
reason is that bond percolation is theq → 1 limit of the q-states Potts model, as can be
seen through the ‘Fortuin–Kasteleyn’ representation of the latter [6]. The importance of both
models has justified the construction of specific hardware such as the Ising computer at Santa
Barbara [7], Percola [8] or the Cluster processor [9]. However, the present update methods,
as well as the power of the computers available, allow us to obtain very accurate measures
for Ising models in general purpose computers. Regarding the percolation, a useful technical
development has been the introduction of a reweighting method [10, 11], which allows one to
extrapolate the simulation results obtained at dilutionp to a nearbyp′ dilution. As an outcome,
dilution derivatives can be also efficiently measured. This has suggested a different simulation
strategy from the usual one in percolation investigations [8, 12–14]. Instead of producing a
small number of very large samples, we generateO(107) different samples in smaller lattices,
in order to accurately measure derivatives with respect to the dilution and to obtain accurate
extrapolations. The very nice agreement [10] with supposedly exact results for the critical
exponents in two dimensions [15], and with other numerical results in three dimensions (see
table 8), allows a great confidence in this new approach. In addition, the coincidence of two
algorithmically different studies is a cross-check that reinforcesboth.

The specific FSS method we use in this paper is based on comparison of measures taken in
two different lattices at the value of the ‘temperature’ for which the correlation length in units
of the lattice size is the same for both [16, 10]. Comparatively, this method is particularly well
suited for the measure of magnetic critical exponents and for the parametrization of the effects
induced by the irrelevant operators. We shall show that at the precision level we can reach
(as small as 0.1% for the critical exponent,ν, extracted from a given lattice pair), taking into
account the effect of the leading irrelevant operator is unavoidable. For the two simple models
we consider, very different situations are found. For site percolation, the scaling corrections
exponent,ω, is so large (ω ≈ 1.6) that other commonly ignored corrections, such as those
induced by the analytic part of the free energy, are of the same order. This makes our estimates
of the critical exponents quite independent of the details of the infinite-volume extrapolation.
But, on the other hand, the parametrization of the scaling corrections is remarkably difficult.
In contrast, for the Ising model,ω ≈ 0.8, as has been known for twenty years from series
estimates (see [3] and references therein), consequently the infinite-volume extrapolation is
mandatory. But the critical exponents related with higher-order corrections are large enough
to allow for a neat, simple parametrization.

In the next section we describe the FSS method we use. The measured observables are
defined in section 3. The results for the Ising model and the site percolation are reported in
sections 4 and 5, respectively. We finish with the conclusions.
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2. Finite-size scaling

Today, a nice unifying picture of critical phenomena is provided by the RG. In this frame, one
can study not only the leading singularities defining the critical exponents, but also subdominant
corrections (the Wegner confluent corrections [17]). In addition, from the RG, a transparent
derivation of the FSSA follows (see [4] and references therein). The starting point is the free
energy of ad-dimensional system

f (t, h, {uj }) = g(t, h, {uj }) + b−dfsing(b
yt t, byhh, {ujbyj }) (1)

wherefsing is the so-called singular part, whileg is an analytical function. We callb the
block size in the RG transformation (RGT), whileyt , yh andyj (j > 3) are the eigenvalues
of the RGT with scaling fieldst , h anduj (j > 3). In the simplest applications (such as
the ones we are considering) there are two relevant parameters: the ‘thermal field’,t , and the
magnetic field,h (i.e.yt > 0, yh > 0) and we denote by{uj } the set of the irrelevant operators
(0> y3 > y4 > y5 > · · ·). One commonly uses the definitionsν = 1/y1, η = 2+d−2yh and
ω = −y3. The scaling fieldt can be identified with the reduced temperature in Ising systems,
or with (p−pc)/pc in percolation problems. Taking derivatives of the free energy with respect
to t or h it is possible to compute the critical behaviour of the different observables, including
their scaling corrections [17]. A very similar strategy is followed in the study of a finite lattice,
where we write for the free energy (see [18] for a detailed presentation)

f (t, h, {uj }, L−1) = g(t, h, {uj }) + b−dfsing(b
yt t, byhh, {ujbyj }, b/L). (2)

At this point one takesb = L, thus arriving at a single-site lattice. By performing the
appropriate derivatives, all the critical quantities can be computed. The result can be cast in
general form for a quantityO diverging liket−xO in the thermodynamical limit:

O(L, t) = LxO/ν
[
FO

(
L

ξ(∞, t)
)

+O(L−ω, ξ−ω)
]

(3)

whereFO is a smooth scaling function. In usual applications one is interested in theξ � L

regime, thusξ−ω is safely neglected. Of course in equation (3) we have only kept the leading
irrelevant eigenvalue, but, in fact, other scaling corrections like

{Lyj }, {Lyj+yi }, . . . , (i, j > 3) (4)

are to be expected. In addition, other kinds of terms are induced by the analytical part of
the free energy,g. For the susceptibility (or related quantities like the Binder cumulant or
the correlation length, see below) one should take the second derivative with respect to the
magnetic field,h, in equation (2). The leading contribution of the analytical part is independent
of the lattice size. Thus, if one wants to cast the result as in equation (3), corrections likeL−γ /ν

should be added.
Equation (3) is still not convenient for a numerical study, because it contains not directly

measurable quantities likeξ(∞, t). Fortunately, it can be turned into an useful expression if a
reasonable definition of the correlation length in a finite lattice,ξ(L, t), is available:

O(L, t) = LxO/ν
[
F̃O

(
ξ(L, t)

L

)
+O(L−ω)

]
(5)

whereF̃O is a smooth function related withFO andFξ .
To reduce the effect of the corrections-to-scaling terms, one could take measures only in

large enough lattices. Even in the simplest models, as in the two considered in this paper, if one
wants to obtain very precise results, the lattice sizes required can be unreachable. However, we
shall show that this is not the most efficient option. In the specific method we use, the scaling
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function is eliminated by taking measures of a given observable at the same temperature in
two different lattice sizes (L1, L2). At the temperature where the correlation lengths are in the
ratioL2 : L1, from equation (5) we can write the quotient of the measures of an observable,
O, in both lattices as

QO |Qξ= L2
L1

=
(
L2

L1

)xO/ν
[1 +AQO

L−ω1 + . . .] (6)

whereAQO
is a constant.

Similar ideas have been developed in the framework of phenomenological RG [19].
The great advantage of equation (6) is that to obtain the temperature whereQξ = L2/L1,

only two lattices are required, and a very accurate and statistically clean measure of that
temperature can be taken. In addition, the statistical correlation betweenQO andQξ reduces
the fluctuations. Other methods, such as measuring at the peak of some observable suffer in
general from larger corrections-to-scaling. Computing the infinite-volume critical temperature
and measuring at that point performs well for studying observables that vary slowly at the
critical point, as those used for computing theν exponent. However, the magnetic exponents
require measuring quantities that change rapidly with the temperature and this is more involved.
We think that our method outperforms any other previously used, especially in the computation
of theη exponent.

To perform an extrapolation following equation (6), an estimate ofω is required. This can
be obtained from the behaviour of dimensionless quantities, like the Binder cumulant or the
correlation length in units of the lattice size,ξ(L, t)/L, which remain bounded at the critical
point although theirt-derivatives diverge. For a generic dimensionless quantity,g, we shall
have a crossing

g(L, tcross(L, s)) = g(sL, tcross(L, s)).

The distance from the critical point,tcross(L, s), goes to zero as [20]:

tcross(L, s) ∝ 1− s−ω
s1/ν − 1

L−ω−1/ν . (7)

From equation (7), a clean estimate ofω can be obtained provided that|y4| − ω andγ /ν − ω
are large enough (say of order one).

An early study of scaling corrections in Phenomenological RG calculations can be found
in [21]

3. The models

We will consider a cubic lattice with periodic boundary conditions and linear sizeL, the volume
beingV = L3. In the case of the Ising model we consider the usual Hamiltonian

H = −β
∑
〈i,j〉

σiσj (8)

where the sum is extended over nearest-neighbour sites and the spin variables are±1.
The fundamental observables we measure are the energy, and the magnetization

E =
∑
〈i,j〉

σiσj M = 1

V

∑
i

σi . (9)

The energy is extensively used forβ-extrapolation [22] and for calculatingβ-derivatives
through its connected correlation.
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The other quantities we measure are related to the magnetization. In practice we are
interested in mean values of even powers of the magnetization as the susceptibility

χ = V 〈M2〉 (10)

or the Binder parameter

g4 = 3

2
− 1

2

〈M4〉
〈M2〉2 . (11)

The cumulantg4 tends to a finite and universal value at the critical point. As correlation
length in a finite lattice, we use a quantity that only involves second powers of the magnetization,
but uses the Fourier transform of the spin field

σ̂ (k) = 1

V

∑
r

eik·rσr. (12)

Defining

F = V

3
〈|σ̂ (2π/L, 0, 0)|2 + permutations〉 (13)

we will use as correlation length [23]

ξ =
(
χ/F − 1

4 sin2(π/L)

)1
2

. (14)

The site percolation is defined by filling the nodes of a lattice with probabilityp. Once the
lattice sites are filled (we call this particular choice asample) a system of spins is placed
in the occupied nodes. The spins interact with the Hamiltonian (8) at zero temperature
(β = ∞). In this way neighbouring spins should have the same sign, while the signs of
spins belonging to different clusters (i.e. not connected through an occupied lattice path) are
statistically uncorrelated. Thus, by counting the number of spins contained in each cluster,
{nc}, we know the exact values of〈M2〉 and〈M4〉 in a particular sample:

〈M2〉 = 1

V 2

∑
c

n2
c

〈M4〉 = 3〈M2〉2 − 2

V 4

∑
c

n4
c

(15)

where the sums are extended to all the clusters.
To compute the quantities involving Fourier transforms of the magnetization we measure

n̂c(k) = 1

V

∑
r∈c

eik·rσr (16)

where the sum is extended to the sites of thecth cluster, arriving at

〈|σ̂ (k)|2〉 =
∑
c

|n̂c(k)|2. (17)

We then average equations (15) and (17) in the different samples generated. This new average
will be denoted by an overline. So, we define the correlation length and the cumulantg4 as

ξ =
(
χ/F − 1

4 sin2(π/L)

)1
2

(18)

g4 = 3

2
− 1

2

〈M4〉
〈M2〉2

. (19)
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Another universal quantity, whose non-vanishing value proves that the susceptibility is not a
self-averaging quantity, is the cumulantg2

g2 = 〈M
2〉2 − 〈M2〉2

〈M2〉2
. (20)

A last technical comment for our percolation study is that we store the actual density
values obtained with probabilityp, in order to perform ap-extrapolation of the mean values
of the interesting observables, and alsop-derivatives [10, 11, 24].

Both for the Ising model and site percolation, the observables we use to compute the two
independent critical exponents,η andν, are

χ → x = ν(2− η)
∂βξ, ∂pξ → x = ν + 1.

(21)

For the sake of completeness we will link here our method with the more classic approach
followed in percolation. The basic entity in percolation is the number of clusters of sizes

divided by the lattice volume,ns [5]. This object induces a probability of finding a cluster of
sizes, given bysns . Near the percolation threshold,pc, ns follows the law

ns = s−τ f (s1/σ (p − pc)) (22)

whereσ andτ are critical exponents, andf is a scaling function. This yields just atp = pc:
ns = s−τ (A +Bs−� + · · ·) (23)

where� is a corrections-to-scaling exponent. We can relate the thermodynamical critical
exponents,η, ν andω with the more standard exponents in percolationσ , τ and�:

ν = τ − 1

σd
(24)

η = (2 +d)τ − 3d − 2

τ − 1
(25)

ω = �

σν
(26)

where d is the spatial dimension of the lattice (in opposition to the fractal dimension
df = (σν)−1).

4. Results for the Ising model

We have used a Single Cluster (SC) update algorithm [25] which is known to perform very
well for this model. We take measures every 50 SC. We have accumulated eight million
measures for lattice sizesL = 8, 12, 16, 24, 32, 48, 64, 96 and 128 atβ = 0.221 65. For
the statistical analysis, we use a jack-knife method with 50 bins of data. Our pseudo-random
number generator has been a corrected shift register generator introduced in [26] improved by
adding (mod 1) a congruential generator (see [10]).

The results for the critical exponents using the quotients for the observables of
equation (21) from lattice pairs of sizes(L, 2L)measured whereQξ = 2 are shown in table 1.
We also report the values of the universalg4 cumulant at the same points. From this table, it
is apparent that, with the statistical error reached, an infinite-volume extrapolation is needed.
This is especially clear for theη exponent.

To perform this extrapolation, one should try to take into account the corrections-to-
scaling. For the Ising model, we shall show that the leading-order corrections are enough to
obtain a fair extrapolation.
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Table 1. Critical exponentsν andη for the Ising model obtained from pairs of lattices of sizes
(L, 2L) whereQξ = 2. We present alsog4(L) at the same points. The last row corresponds to an
infinite-volume extrapolation considering the leading scaling corrections. The second error bar is
induced by the uncertainty inω: whenω increases,ν andg4 increase, whileη decreases.

L ν η g4

8 0.643 79(37) 0.010 97(40) 0.721 77(19)
12 0.637 78(46) 0.020 94(31) 0.714 60(19)
16 0.636 54(40) 0.025 48(38) 0.710 48(18)
24 0.633 85(44) 0.029 27(34) 0.706 68(21)
32 0.632 77(48) 0.031 29(38) 0.704 81(25)
48 0.631 64(48) 0.032 73(37) 0.703 17(25)
64 0.631 6(6) 0.033 76(39) 0.702 04(33)
∞ 0.629 4(5)(5) 0.037 4(6)(6) 0.698 4(5)(6)

Table 2. Crossing points ofξ/L andg4 for the Ising model obtained from lattice pairs(L, 2L).

L βc(ξ/L,L) βc(g4, L)

8 0.221 624 6(32) 0.221 857 1(29)
12 0.221 643 8(13) 0.221 727 9(18)
16 0.221 648 7(9) 0.221 687 8(11)
24 0.221 651 9(5) 0.221 666 1(7)
32 0.221 653 14(45) 0.221 660 1(6)
48 0.221 654 38(23) 0.221 657 09(30)
64 0.221 654 32(19) 0.221 655 63(26)

Table 3. Results of the infinite-volume extrapolation of the crossing points forg4 andξ/L, including
data fromL > Lmin in the Ising model. The first error bar inβc is statistical while the second
is due to the uncertainty inω. We quote our preferred value and error bars by underlines. The
extrapolation forβc decreases whenω increases.

Lmin χ2/d.o.f. ω βc

8 10.50
10 0.934(14) 0.221 654 433(83)(18)

12 10.06
8 0.938(24) 0.221 654 447(90)(7)

16 1.796
6 0.87(4) 0.221 654 56(11)(1)

24 1.727
4 0.86(9) 0.221 654 59(15)(5)

We first need to evaluate theω exponent. From the data of table 1 it is difficult to obtain a
sensible value ofω. We use the shift from the infinite-volume critical coupling of the crossing
points of the scaling quantitiesξ/L andg4 which are much more accurate. These points are
shown in table 2. Then we carry out a joint fit of all values to the functional form given in
equation (7) (see [16, 24] for a more detailed exposition of the method). Our criterion is to fit the
data, using the full covariance matrix, for lattices greater or equal than a givenLmin, increasing
this minimum size until a stable value and a reasonableχ2/d.o.f. (where d.o.f. means degrees
of freedom) are found (see table 3). We take as fitted parameters those corresponding to the first
satisfactoryLmin with the statistical error of the fit discardingLmin, in this way the systematic
errors should be smaller than the statisitical ones. In this case, we observe thatLmin = 16 is
enough for our precision. The value obtained,ω = 0.87(9), is compatible with that computed
using analytical techniques [3], or the recent experimental valueω = 0.91(14) [27]. Thus
one can be confident that the corrections-to-scaling are mainly due to the leading term when
L > 16. We should remark that for obtainingω an estimation ofν must be used. For our
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Figure 1. Infinite-volume extrapolation forQ∂βξ = 21+ 1
ν , QM2 = 2−1−η, andg4. The full lines

correspond to fits withω = 0.87 fromL > Lmin. A broken line is plotted forL < Lmin.

Table 4. Previous MC determination of critical quantities for the Ising model. The errors of [18, 9]
correspond to two standard deviations.

Reference βc ν η β γ

[29] 0.221 6544(10)
[18] 0.221 6546(10) 0.6301(8) 0.037(3)
[30] 0.221 655(1)(1) 0.625(1) 0.025(6)
[9] 0.221 654 4(6)
[31] 0.6299(3) 0.0359(10)
This work 0.22165456(15)(5) 0.6294(5)(5) 0.0374(6)(6) 0.3265(3)(1) 1.2353(11)(14)

accuracy, a value ofν with an error at the 1% level is enough. Therefore, we do not need a
previous infinite-volume extrapolation and it is safe to takeν = 0.63 for this purpose. The
obtained infinite-volume critical point,βc, is scarcely affected by the uncertainty inω.

Using this estimate forω we can perform a fit to the equation (6). In the last row of table
1 we present the extrapolation results forν, η andg4. In all cases we have used the criterium
described above, in order to deal with higher-order scaling corrections (Lmin = 12, 16, 16 for
ν, η andg4, respectively).

In figure 1 we show graphically the fit quality for the quotients used to obtain the exponents
as well as forg4 cumulant.

We remark that the pair(L, 2L) having a systematic error inη smaller than the final error
in our extrapolation has 2L = 2000 (2L = 800 for ν). We recall that our largest pair has
2L = 128.

Values for the critical quantities obtained with MC by other authors are reported in
table 4. We warn that the error bars reported in [18, 9] and displayed in table 4 correspond
to two standard deviations. For comparison, a recent series computation [28] yielded
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βc = 0.221 659+2
−5. Only in [18] is an infinite-volume extrapolation considered for the critical

exponents. We remark that our error estimates forν are similar to those reported in [18], but
obtained in larger lattices (a factor of three) and are consequently safer from the systematic
error point of view. On the other hand, our results forη andβc have a statistical error of a factor
of two smaller than the previous best measures. The high accuracy achieved for the critical
point can be easily understood by considering table 2: the crossings ofξ/L are a monotonically
increasing sequence while those ofg4 are a decreasing one. Thus it is not surprising that the
simultaneousconsideration of both, allows for an efficient calculation. As already stressed in
section 2, the quotients method is particularly well suited forη measures. In fact this method
outperforms any other when measuring both quantities (βc andη) in many different models in
two-, three- and four-dimensions [10, 16, 24].

A different approach has been used in [31], where the Hamiltonian is numerically tuned,
in order to make theO(L−ω) corrections for cumulantg4 vanishing. This largely reduces
the corrections-to-scaling for the exponents. However, the data of [31] have been analysed
asif these coefficients,AO , would be exactly zero. There is still an error associated with the
uncertainty in theassumptionAO = 0, that has not been considered in [31], however. In fact,
there is nothing special in the valueAO = 0, the only essential ingredient for the dramatic
reducing of the error estimate is to neglect the error inAO . Had we disregarded the error in
AQO

, we would obtainν = 0.6294(2), η = 0.0374(2). However, we do not believe this to be
a valid procedure. After the circulation of this paper as a preprint, a paper has appeared [32]
where the authors insist on the possibility of an error reduction with this procedure. However,
we remark that the role of higher-order corrections cannot be as neatly separated from the
leading ones as to warrant a safe error estimate [33].

5. Site percolation results

The MC simulation in this case is rather different, since one generates directly independent
configurations. We will work in the so-called canonical formulation in which the probability
of finding a hole in a given lattice site is independent from the rest of sites.

It is very quick to generate the different configurations and most of computer time is
employed in tracing the clusters. We generate 32 millions of samples forL 6 96, 16 millions
for L = 96, 128 and 4 millions forL = 192. As we need individual measures for thep-
extrapolation it is necessary to store them on disk as they are obtained from different processors.
In all cases we simulate atp = 0.3116 [5].

Table 5. Critical exponents for the site percolation obtained from pairs of type(L, 2L) obtained at
Qξ = 2. We also show the cumulantsg4(L) andg2(L) at the same points. The last row corresponds
to an infinite-volume extrapolation, showing the statistical error (first bar) and that coming from
the uncertainty inω (second bar).

L ν η g2 g4

8 0.8802(6) -0.015 31(12) 0.353 95(11) 0.723 53(9)
12 0.8847(6) -0.032 30(12) 0.353 95(11) 0.723 53(9)
16 0.8825(7) -0.038 44(12) 0.348 54(10) 0.720 74(10)
24 0.8807(10) -0.042 67(12) 0.346 01(10) 0.716 95(8)
32 0.8809(10) -0.044 23(10) 0.345 59(10) 0.714 99(9)
48 0.8771(14) -0.045 31(12) 0.346 03(11) 0.712 90(9)
64 0.8757(17) -0.045 39(10) 0.346 38(10) 0.711 95(8)
96 0.8796(33) -0.045 54(20) 0.346 72(24) 0.71124(20)
∞ 0.8765(16)(2) -0.046 02(27)(7) 0.346 75(26)(6) 0.710 52(21)(19)



10 H G Ballesteros et al

Table 6. Crossing points forξ/L andg4 for the site percolation obtained from pairs of type(L, 2L).

L pc(ξ/L,L) pc(g4, L)

8 0.309 761(7) 0.313 201(11)
12 0.311 034(5) 0.312 454(7)
16 0.311 3614(36) 0.312 0770(49)
24 0.311 5337(20) 0.311 7950(26)
32 0.311 5788(14) 0.311 7007(19)
48 0.311 5992(9) 0.311 6390(12)
64 0.311 6036(8) 0.311 6214(12)
96 0.311 6063(9) 0.311 6122(11)

Table 7. Infinite-volume extrapolation of the crossing points forg4 andξ/L, including data from
L > Lmin in the site percolation, in order to obtainω andpc.

Lmin χ2/d.o.f. ω pc

24 10.5
6 1.57(2) 0.311 6092(5)(2)

32 0.65
4 1.62(4) 0.311 6081(7)(2)

48 0.07
2 1.64(13) 0.311 6075(11)(2)

Table 8. Previous MC determination of critical quantities for the three-dimensional site percolation.

Reference pc σ τ ω

[13] 0.311 604(6) 2.188(2)
[12] 0.445(10) 2.189(2) 1.61(5)
[14] 0.311 600(5) 2.186(2) 1.77(13)
[8] 1.4
This work 0.311 6081(11)(2) 0.4522(8)(1) 2.189 06(6)(2) 1.62(13)

In table 5 we present the results for the exponentsν and η as well as theg2 and g4

cumulants, obtained from different pairs of lattices.
Regardingpc, we show in table 6 the crossing points ofξ/L andg4 for pairs(L, 2L). We

find a quite small, albeit significant, drift even in the largest lattices. Notice that the values
for the ξ/L (g4) crossing are monotonically increasing (decreasing) withL. Thus, unless
something weird happens with the scaling corrections,pc is bounded from above and below
and one can readily extractpc = 0.311 609(3). However, a more precisepc determination is
possible using FSS techniques. We proceed as before to make a joint fit to equation (7) for all
the data in table 6, excluding those forL < Lmin. The results are presented in table 7.

The value ofω = 1.62(13) is remarkably larger than in most of the three-dimensional
systems (slightly below 1), but agrees with the prediction ofε-expansions, and lies between
theω2D = 2 of two-dimensional site percolation [15] and the four-dimensional value [10]
ω4D = 1.13(10). Moreover, our value forω is in agreement with other MC determinations
(see table 8), and also with a low-density series estimateω = 1.3(3) [34].

In figure 2 we display the quotients ofχ and∂βξ , and the values ofg4 andg2 as functions
of L−ω for ω = 1.62, measured at the points whereQξ = 2. The linear behaviour is much
less clear than in the Ising case. One should not be surprised by this fact since for such a large
ω there is very unlikely to be a clear separation between the leading corrections-to-scaling
(asL−ω) and the sub-leading ones. One should be especially worried with the analytical
corrections that for most operators go asL−γ /ν ≈ L−2. A parametrization of the sub-leading
corrections is far from the present MC capacities.
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Figure 2. Q∂βξ = 21+ 1
ν ,Qχ = 22−η, g4 andg2 for pairs (L, 2L) as functions ofL−ω. In the plot

we useω = 1.62.

Fortunately,ω is large enough to make the extrapolation almost unnecessary. Forν, we
do not find significant deviations forL > 48 and one could be tempted to simply average,
obtainingνmean = 0.8768(10). However, we find no reason to consider as vanishing the
coefficient ofL−ω, and this assumption underestimates the errors. We find a non-zero value
of AQO

in the fits to equation (6) forη and the cumulants. In the last row of table 5 we present
the results of these fits as well as the corresponding statistical errors, the second error bars
corresponding to the uncertainty inω. Thisω-error allows us to quantify the possible shift
that could be expected if the dominant corrections-to-scaling were the analytical ones, as the
behaviour is basically linear withω. One simply has to add 2.5 times theω induced error to
the central value for the extrapolation (the sign would be positive in the four cases). Forν, η
andg2, one can conclude that the systematic errors are hardly greater than the statistical one.
Forg4 the former could be twice the latter. Our final results can be contrasted with other MC
estimates in table 8.

6. Conclusions

We have found that when measuring critical exponents and other universal quantities with
high precision (below 0.1%) with finite-size scaling techniques, a proper consideration of the
corrections-to-scaling is mandatory.

We have studied two simple three-dimensional models. The Ising model shows corrections
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that can be parametrized with the leading corrections-to-scaling term. It is possible to obtain
a very safe infinite-volume extrapolation that can be as far as ten standard deviations from the
largest lattice’s value.

In the site percolation, the behaviour is completely different. The leading corrections-to-
scaling cannot be easily isolated from the higher-order ones, since the first irrelevant exponent
is very large. However, its largeness makes the results on the largest lattices very near the
infinite-volume limit, and the difficulties of the extrapolation are not overwhelming. We have
also measured with high precision the values of two universal cumulants (g4, g2). The non-
vanishing value of the latter shows that the susceptibility is not a self-averaging quantity.
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